Math 245C Lecture 16 Notes

Daniel Raban

May 6, 2019

1 Smooth Density Results, Smooth Urysohn's Lemma, and Characters of \mathbb{R}^n

1.1 Density results for C_c^{∞} and S

Let $\phi_1 \in C_c^{\infty}(\overline{B_1(0)})$ be such that $\phi_1 > 0$ on $B_1(0)$ and such that

$$\int_{\mathbb{R}^n} \phi_1(x) \, dx = 1.$$

For example, take

$$\phi(x) := \begin{cases} e^{1/(\|x\|^2 - 1)} & |x| < 1\\ 0 & |x| \ge 1 \end{cases}, \qquad \phi_1(x) = \frac{\phi(x)}{\int \phi}.$$

Lemma 1.1. If $1 \le p < \infty$, then C_c^{∞} and S are dense in L^p .

Proof. Let $f \in L^p$, and let $\varepsilon_0 > 0$. We are to find $g \in C_c^{\infty}$ such that $||f - g||_p < \varepsilon_0$. Choose $\tilde{g} \in C_c$ such that $||\tilde{g} - f||_p < \varepsilon_0/2$. Set

$$\phi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \phi_1\left(\frac{x}{\varepsilon}\right).$$

We have $\phi_{\varepsilon} * \tilde{g} \in C^{\infty}$. Furthermore, $\operatorname{supp}(\phi_{\varepsilon} * \tilde{g}) \subseteq \operatorname{supp}(\tilde{g}) + \overline{B_{\varepsilon}(0)}$. Hence, $\phi_{\varepsilon} * \tilde{g} \in C_c^{\infty}$. Choose ε small enough such that

$$\|\phi_{\varepsilon} * \tilde{g} - \tilde{g}\|_p < \varepsilon/2.$$

So the desired inequality holds for $g = \phi_{\varepsilon} * \tilde{g}$. In conclusion, $L^p \subseteq \overline{C_c^{\infty}}^{L^p} \subseteq \overline{S}^{L^p} \subseteq L^p$. \Box Lemma 1.2. C_c^{∞} and S are dense in $C_0(\mathbb{R}^n)$ for the uniform norm. *Proof.* Let $f \in C_0$. Recall that $\overline{C_c}^{L^{\infty}} = C_0$. Hence, given $\varepsilon_0 > 0$, there is a \tilde{g} in C_c such that $\|f - \tilde{g}\|_u \leq \varepsilon/2$. Since \tilde{g} is uniformly continuous and bounded,

$$\lim_{\varepsilon \to 0} \|\tilde{g} - \phi_{\varepsilon} * \tilde{g}\|_u = 0.$$

Thus , there is $\varepsilon > 0$ such that

$$\|\tilde{g} - \phi_{\varepsilon} * \tilde{g}\|_{u} \le \varepsilon/2.$$

So we get

$$\|f - g\|_u \le \varepsilon$$

If we set $g = \phi_{\varepsilon} * \tilde{g}$, as before, $g \in C_c^{\infty}$. In conclusion, $C_0 \subseteq \overline{C_c^{\infty}}^{L^{\infty}} \subseteq \overline{\mathcal{S}}^{L^{\infty}} \subseteq C_0$.

1.2 Smooth Urysohn's lemma

Lemma 1.3 (Urysohn). Let $K \subseteq \mathbb{R}^n$ be a compact nonempty set, and let $U \subseteq \mathbb{R}^n$ be an open set such that $K \subseteq U$. Then there exists a function $f \in C_c^{\infty}$ such that $f|_K = 1$, $\operatorname{supp}(f) \subseteq U$, and $\operatorname{supp}(f)$ is compact.

This is useful on manifolds. Treat a neighborhood of a point as a subset of \mathbb{R}^n . If you want to integrate a function on the manifold, you can integrate it over every neighborhood.

Proof. Set $3\delta = \operatorname{dist}(K, U^c) > 0$. Let $K_1 = \{x \in \mathbb{R}^n : \operatorname{dist}(x, K) \leq \delta\}$. Note that K_1 is compact, and $\operatorname{dist}(K_1, U^c) \geq \delta$. Let $f = \phi_{\varepsilon} * \mathbb{1}K_1$. Then $f \in C^{\infty}$, and $\operatorname{supp}(f) \subseteq K_1 + \overline{B_{\varepsilon}(0)} \subseteq U$ if $\varepsilon < \delta$. So $f \in C_c^{\infty}$, and f has compact support. If $x \in K$, then

$$f(x) = \int_{\mathbb{R}^n} \mathbb{1}_{K_1}(x-y)\phi_{\varepsilon}(y) \, dy = \int_{\overline{B_{\varepsilon}(0)}} \mathbb{1}_{K_1}(x-y)\phi_{\varepsilon}(y) \, dy.$$

If $x \in K$ and $|y| \leq \varepsilon$, then $x - y \in K_1$. So

$$f(x) = \int_{\overline{B_{\varepsilon}(0)}} \phi_{\varepsilon}(y) \, dy = \int_{\mathbb{R}^n} \phi_{\varepsilon}(y) \, dy = 1.$$

1.3 Characters on $(\mathbb{R}^n, +)$

Proposition 1.1. Let $\phi : \mathbb{R}^n \to \mathbb{C}$ be a measurable function such that $|\phi(x)| = 1$ and $\phi(x+y) = \phi(x)\phi(y)$ for any $x, y \in \mathbb{R}^n$. Then

- 1. There exists $\xi \in \mathbb{R}^n$ such that $\phi(x) = e^{2\pi i \xi \cdot x}$.
- 2. If we further assume that ϕ is \mathbb{Z}^n -periodic, then $\xi \in \mathbb{Z}^n$.

Proof. Let $(e_j)_{j=1}^n$ the standard orthonormal basis of \mathbb{R}^n . If $x \in \mathbb{R}^n$, then

$$\phi(x) = \phi\left(\sum_{j=1}^n x_j e_j\right) = \prod_{i=1}^n \phi(x_j e_j).$$

The function $x \mapsto \phi(x, e_j)$ can be identified with the restriction of ϕ to a 1-dimensional space. Therefore, $t \mapsto \phi(te_j)$ satisfies the assumption of the lemma for n = 1. It is not a loss of generality to assume n = 1.

 Set

$$F(x) = \int_0^x \phi(t) \, dt.$$

There exists $a \neq 0$ such that $F(a) \neq 0$ (lest $\phi \equiv 0$). Set A = 1/F(a). We have

$$\phi(a) = \phi(x)A \int_0^a \phi(t) dt = A \int_0^a \phi(x)\phi(t) dt = A \int_0^a \phi(x+t) dt = A \int_x^{x+a} \phi(z) dz$$

= $A(F(x+a) - F(x)).$

Since F is continuous, this gives us that ϕ is continuous. Since ϕ is continuous, F is continuously differentiable. Apply the equality above again to conclude that $\phi \in C^1$. Differentiating both sides, we obtain

$$\phi'(x) = A(\phi(x+a) - \phi(x)) = A(\phi(x)\phi(a) - \phi(x)) = A\phi(x)(\phi(a) - 1) = \phi(x)B.$$

So we get

$$\frac{d}{dx}\ln(\phi(x)) = \frac{\phi'(x)}{\phi(x)} = B$$

Integrating, we obtain

 $\phi(x) = \phi(0)e^{Bx}.$

But $\phi(0) = \phi(0+0) = \phi(0)^2$, and so $\phi(0) \in \{0,1\}$. Since $|\phi(0)| = 1$, we conclude that $\phi(0) = 1$. Write $B = B_1 + iB_2$ with $B_1, B_2 \in \mathbb{R}$. Then

$$\phi(x) = e^{B_1 x} e^{iB_2 x},$$

and

$$1 = |\phi(1)| = e^{B_1} \implies B_1 = 0.$$

So $\phi(x) = e^{2\pi i \xi x}$, where $\xi = B_2/(2\pi)$. Assume ϕ is \mathbb{Z} -periodic. Then

$$e^{2\pi i\xi} = \phi(1) = \phi(0) = 1.$$

So $2\pi i \xi \in 2\pi \mathbb{Z}$. That is, $\xi \in 2\pi \mathbb{Z}$.